Метран АГ 300А

Технологический газовый анализатор

- Газовый анализатор обеспечивает анализ газов в технологических процессах. Осуществляет анализ с использованием фотометрии в инфракрасной области (NDIR), обеспечивает определение теплопроводных характеристик водорода, электрохимических и парамагнитных свойств кислорода и влажности с использованием соответствующих ячеек.
- Современные возможности обмена данными.
- Исключительная надежность и два года гарантии.

Газоанализатор Метран АГ 300А выполнен в 19- дюймовый 3U корпус общепромышленного исполнения, может устанавливаться в шкафы или в стойку. Передняя панель оснащена большим жидкокристаллическим дисплеем, ротаметром с игольчатым вентилем для регулирования потока пробы и программными клавишами для навигации по структуре меню. Задняя сторона обеспечивает доступ к газовым и электрическим соединениям.

Гибкие возможности анализа

Анализатор Метран АГ 300А позволяет использовать комбинацию фотометров для измерения в инфракрасной, области (NDIR), а также парамагнитные, циркониевые и ячейки по теплопроводности и электрохимические датчики кислорода (pO2/eO2). Анализатор позволяет реализовать конфигурацию анализатора с независимыми методами измерения и раздельными (независимыми) газовыми трактами. Исполнение материалов трубной обвязки и чувствительных элементов выполняется в соответствие с требованиями Заказчика.

Улучшенные характеристики

Используемые в газовом анализаторе средства фотометрического анализа Метран АГ 300А обеспечивают высокую точность измерений, что позволяет усовершенствовать процессы измерений и снизить стоимость владения благодаря:

- широким диапазонам измерений динамических характеристик;
- низкой зависимости от температур;
- исключительной долговременной стабильности;
- упрощению процесса калибровки.

Гарантия два года

Все важные части и сам газовый анализатор в сборе проходят через разные процедуры проверки, в том числе проверки на долговременную стабильность и зависимость от температур. Благодаря этому анализатор получает двухлетнюю гарантию изготовителя. Исключением являются детали проточной части и внешние подключаемые электронные устройства.

Стандартные средства связи

Газовые анализаторы Метран АГ 300А имеют стандартный интерфейс связи для технологических процессов:

- аналоговые выходные сигналы;
- дискретные сигналы Аларм:
- цифровой канали связи с верхним уровнем управления.

Газовые анализаторы Метран АГ 300А имеют два релейных выхода сигнализации состояния и поддерживают обмен данными по протоколу MODBUS RTU по каналу последовательной связи (на основе RS232).

Инструменты

Газоанализатор Метран АГ 300A имеет встроенный ротаметр с игольчатым вентилем для регулировки расхода пробы непосредственно с передней панели.

Простота эксплуатации

Прибор оснащен графическим дисплеем и управляется вручную четырьмя кнопками. Четкие текстовые сообщения (возможен выбор определенных языков) и стандартные используемые в промышленности символы служат для вывода на дисплей данных измерений и информации о состоянии газового анализатора.

Дополнительное оборудование устройства в полевом корпусе

- Пробоотборный насос.
- Блок клапанов.
- Датчик давления.
- Разъем цифрового ввода-вывода.
- Плата аналогового ввода.

Области применения

- Анализ и контроль в нефтеперерабатывающем, нефтехимическом и химическом производстве.
- Производство водорода, аммиака и удобрений.
- Установки очистки газа и разделения воздуха.
- Производство и распределение природного газа.
- Металлургическое производство, процессы закалки и термической обработки.

Биогазы и захоронение отходов.

Характеристики

Минимальные и максимальные диапазоны измерений для разных газов (выписка)

Всего газовые анализаторы Метран АГ 300А способны идентифицировать до 60 газов. В таблице приведены примеры наиболее распространенных используемых газов. Для получения информации о не указанных в таблице составах или газах обращайтесь в местное представительство компании Метран Проект.

Таблица 1 Газовые компоненты, диапазоны измерения и примеры

Газовый компонент		Метод	Минимальный диапазон	Максимальный диапазон
Аммиак	NH ₃	IR	0–100 частей/млн	0–100%
Углекислый газ	CO ₂	IR	0–10 частей/млн	0–50%
Окись углерода	CO	IR	0–10 частей/млн	0–50%
Метан	CH ₄	IR	0–200 частей/млн	0–50%
Монооксид азота	NO	IR	0–25 частей/млн	0–50%
Кислород	O ₂	электрохимический	0–5%	0–25%
Кислород	O ₂	парамагнитный	0–1%	0–100%
Кислород		циркониевый	0–10 частей/мл	0–50%
Кислород в следовой	O ₂	электрохимический	0–10 частей/млн	0–10 000 частей/млн ⁶
концентрации		циркониевый	0–10 частей/мл	0–50%
Двуокись серы	SO ₂	IR	0–25 частей/млн	0–1%
Двуокись серы	SO ₂	IR	0–20 частей/млн	0–50%
Водяной пар, в следовой	H ₂ O	емкостной	0–10 частей/млн	0–1%
концентрации				
Водород	H ₂	TC	0–1%	0–100%
Сумма С1 – С6	C ₁ – C ₆	IR	0-100 ppm	0–50%

Стандартные технические характеристики

Таблица 2. Стандартные характеристики измерений с использованием датчиков, работающих в инфракрасной (IR) области.

	NDIR	
Предел чувствительности (4 σ) ^{1 4}	≤ 0.5%	
Нелинейность ^{1 4}	≤ 1%	
Дрейф нуля ^{1 4}	≤ 0,5% в неделю	
Дрейф диапазона (чувствительности) ^{1 4}	≤ 1% в месяц	
Воспроизводимость 14	≤ 0.5%	
Время реагирования (t ₉₀) ³	4 c ≤ t ₉₀ ≤ 7 c ⁵	
Допустимый поток газа	0,2–1,5 л/мин	
Влияние потока газа 1 4	≤ 0.5%	
Максимальное давление газа ⁸	≤ 1500 гПа абс.	
Влияние давления ²		
 При постоянной температуре 	≤ 0,10% на гПа	
– C компенсацией давления ⁷	≤ 0,01% на гПа	
Допустимая окружающая температура ⁹	от 0 (-20) до +50°С	
Влияние температуры ^{1 13} (при постоянном		
давлении)		
– На нулевой отметке	≤ 0,5% на 10 K	
– В крайних точках диапазона шкалы	≤ 5% (от 0 до +50°С)	
(чувствительность)	·	
Терморегулятор ^{6, 12}	60°C ⁵	
Время прогрева ⁶	от 15 до 50 минут ⁵	

¹ Относится к полной шкале

8 При использовании внутреннего пробоотборного

² Относится к измеряемой величине

³ От впускного отверстия газового анализатора при потоке газа 1,0 л/мин (электр. демпфирование = 0 с)

⁵ Зависит от встроенной фотометрической скамьи

⁶ Зависит от диапазона измерений ⁷ Требуется датчик давления

треоуется датчик давления

¹⁰ Сенсор для терморегулятора 75°C

¹¹ Колебания потока в пределах ± 0,1 л/мин ¹² Дополнительный обогреваемый отсек с

температурой 60°С (температура регулируется термостатом)

насоса ограничено атмосферным 4 Постоянное давление и температура 9 Температура ниже 0° Столько при

⁹ Температура ниже 0°Столько при наличии термостата для контроля температуры

¹³ Колебания температуры: ≤ 10 К в час

Февраль 2022 г.

Таблица 3. Кислород - характеристики измерений

	Метод измерения		
	Парамагнитный	Электрохимический	Циркониевый
Предел чувствительности (4 о) 14	≤ 0.5%	≤ 1%	≤ 1%
Нелинейность ^{1 4}	≤ 1%	≤ 1%	≤ 1%
Дрейф нуля ¹⁴	≤ 1% в неделю	≤ 2% в неделю	≤ 1% в неделю
Дрейф диапазона (чувствительности) ^{1 4}	≤ 0,5% в неделю	≤ 1% в неделю	≤ 1% в неделю
Воспроизводимость 14	≤ 0.5%	≤ 1%	≤ 1%
Время реагирования (t ₉₀) ³	< 5 c	около 12 с	от 20 до 80 с
Допустимый поток газа	0,2–1,5 л/мин. ¹⁰	0,2–1,5 л/мин.	0,2–1,5 л/мин.
Влияние потока газа ^{1 4}	≤ 2% ¹²	≤ 2%	≤ 2%
Максимальное давление газа ⁷	≤ 1500 гПа абс. ¹⁴	≤ 1500 rПa aбc.	≤ 1500 гПа абс.
Влияние давления ²			
– При постоянной температуре	≤ 0,10 % на гПа	≤ 0,10% на гПа	≤ 0,10% на гПа
– C компенсацией давления ⁶	≤ 0,01 % на гПа	≤ 0,01% на гПа	≤ 0,01% на гПа
Допустимая окружающая температура ⁸	от 0 (-20) до +50°С	от 5 до +45°C	от 0 до +45°C
Влияние температуры ^{1 12} (при постоянном давлении)			
– На нулевой отметке	≤ 0,5% на 10 K	≤ 1% на 10 K	≤ 1% на 10 K ⁵
– В крайних точках диапазона шкалы (чувствительность)	≤ 1% на 10 К	≤ 1% на 10 К	≤ 1% на 10 K ⁵
Терморегулятор ¹¹	60°C ¹¹	нет	нет ⁹
Время прогрева	около 50 минут	-	около 50 минут

¹ Относится к полной шкале

Примечание 1.

Не все перечисленные данные относятся ко всем моделям газовых анализаторов (например, анализатор с терморегулируемым отсеком с температурой 60°С не может использоваться для электрохимического анализа и анализа содержания кислорода в следовой концентрации).

Примечание 2.

При выполнении измерений в инфракрасной, ультрафиолетовой и видимой областях (NDIR/UV/VIS) необходимо учитывать возможность распространения или утечки газа в корпус анализатора. При нахождении в окружающей атмосфере газовые компоненты могут проникать в корпус анализатора. В результате внутри корпуса может повышаться их концентрация. Высокая концентрация измеряемого газового компонента внутри корпуса может повлиять на результаты измерений. То есть может происходить непредусмотренное включение компонента в пробу и смещение результатов измерений. Чтобы избавиться от этого влияния, отсек необходимо продуть газом, не содержащим исследуемый газовый компонент.

² Относится к измеряемой величине

³ От впускного отверстия газового анализатора при потоке газа 1,0 л/мин (электр. демпфирование = 0 с)

⁴ Постоянное давление и температура

⁵ Ниже 10 частей/млн f. c.: 5%

⁶ Требуется датчик давления

⁷ При использовании внутреннего пробоотборного насоса ограничено атмосферным

⁸ Температура ниже 0°С только при наличии термостата для контроля температуры

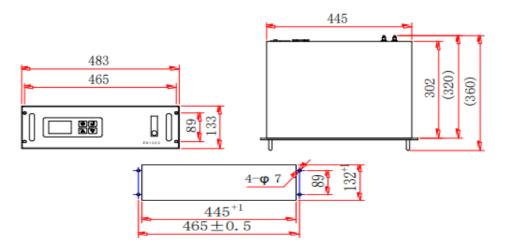
⁹ Только сенсор/элемент

 $^{^{10}}$ Колебания потока в пределах ± 0,1 л/мин

¹¹ Дополнительный терморегулируемый отсек с сенсором, температура 60°C

¹² Колебания температуры: ≤ 10 K в час

¹³ Резкие броски давления не допускаются


Общие технические характеристики

Газовые соединения	PVDF: 6/4 мм; Нержавеющая сталь: 6/4 мм или ¹ / ₄ "
Номинальное напряжение	100–240 В, 50/60 Гц
Номинальный входной ток	3–1,5 А (5,5–3 А в случае двухотсечных моделей)
Подключение питания	Внутренние винтовые зажимы
Подключение сигнальных каналов	Винтовые зажимы;
Защита корпуса	IP 20 по стандарту EN 60529 для внешнего монтажа, защищен от прямого солнечного излучения.
Влажность (без конденсации)	< 90% отн. вл. при 20°C < 70% отн. вл. при 40°C
Bec	До 12-16 кг в зависимости от компоновки
Опции	Внутреннее измерение потока с устройством аварийной сигнализации, барометрическими датчиками давления, терморегулируемым отсеком размещения приборов (60°С / 140°F), средствами установления избыточного давления в корпусе, пробоотборными насосами и (или) блоком (блоками) электромагнитных клапанов для выполнения автоматической калибровки.

Сигнальные входы-выходы, интерфейсы

Аналоговые сигнальные выходы:	1–3, с отдельной оптической изоляцией 4(0)–20 мА (R _B ≤ 500 Ом)
Релейные выходы:	4 реле состояния согласно NAMUR NE 107 или сигналы предельной концентрации, уведомления о состоянии клапана, сухие контакты: 1 А 30 В
Интерфейс связи:	RS 232C с передачей сигналов по протоколу Modbus RTU
Аналоговые сигнальные входы (опция):	2 аналоговых входа 0–1(10) В (R _{вх} = 100 кОм) или 4(0) –20 мА (R _{вх} = 50 Ом)

Размеры

Основные размеры одинаковы для всех моделей Все размеры указаны в мм [в скобках монтажные размеры]

ООО «Метран Проект»

454103, Российская Федерация, г. Челябинск, Новоградский проспект, д. 15 стр. 1, каб. 231 Телефон: +7(351) 24-24-000 E-mail: info@metran-project.ru

© 2022 Все права защищены.

Правообладателем товарного знака «Группа компаний Метран» является ООО «Метран Холдинг».

Содержание данного документа можно использовать только для ознакомления. Несмотря на то, что содержащиеся в данном документе сведения тщательно проверяются, они не являются гарантией, явной или подразумеваемой, относительно описанных в данном руководстве изделий или услуг, а также относительно возможности их применения.

Термины и условия продажи определяются компанией и поставляются по требованию. Компания оставляет за собой право на изменение и дополнение конструкций и технических характеристик своих изделий без уведомления и в любое время.

